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Thermal Conductivity Measurement of
Semitransparent Solids by Hot-Wire Technique1

F. Yu,2 X. Zhang,2, 3 and G. Gao2

A new simple analytic model applicable to the measurement system of a hot
wire and a semitransparent solid material is developed. An experimental study
is carried out on a special glass sample, glass K9, in the temperature range of
297 to 1230 K, and the radiation-free thermal conductivity is reported.

KEY WORDS: heat radiation; hot wire; thermal conductivity; semitranspa-
rent material.

1. INTRODUCTION

Semitransparent materials, such as glass and plastics, are partly trans-
parent to heat radiation. They absorb and emit radiant energy, and are
also called radiation-participant materials. The transient hot-wire technique
is widely accepted as the most precise method for the measurement of the
thermal conductivity of fluids. It has been extended to various domains
such as composite materials, wet porous media, and solids at high tem-
peratures. However, if it is used directly for the measurement of the thermal
conductivity of semitransparent solid materials, the result is influenced by
radiation. We have studied numerically the transient coupled conductive�
radiative heat transfer inside semitransparent materials using the hot-wire
technique [1]. The influences of thermal radiation on the inner heat flux
of the sample and on the temperature rise of the hot wire were analyzed.
Two new concepts, the effective mean absorption coefficient of the material
and the effective emissivity of the hot-wire surface, were introduced; thus,
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the governing equation and the relevant contact boundary condition were
simplified.

Based on [1], a new simple analytic model applicable to the hot-wire
measurement system and a semitransparent solid material is derived in the
present paper by means of the Laplace transform and thermal quadrupole
method [2�4]. Based on parameter estimation, sensitivity analyses are
made for the simplified model. An experimental study is carried out on a
special glass sample, glass K9, in the temperature range of 297 to 1230 K.

2. MATHEMATICAL DESCRIPTION

The ideal model of the transient hot-wire instrument consists of an
infinitely long thin cylinder (hot wire) heated by a constant, uniform inter-
nal source and located in an semitransparent, infinite cylindrical solid
material (sample) which can absorb and emit radiation. A thermal contact
resistance Rc exists between the hot wire and the sample. The hot wire and
sample with constant thermophysical properties are initially at a uniform
temperature T0 . From time t=0, the whole system is heated and the tem-
perature response of the hot wire is measured and recorded simultaneously;
thus, the thermophysical properties of the sample can be estimated.

It is assumed that the temperature of the sample varies only with
radial position r and time t, and, furthermore, the hot-wire surface A1 is
gray, the sample outer surface A2 is black, and the middle semitransparent
material is assumed to be isotropic, gray, and nonscattering. In a cylin-
drical coordinate system, we obtain the energy equation of the sample
(r1<r<r2 and t>0) as follows:

(\cp)
�T
�t

=
*
r

�
�r \r

�T
�r ++qR (1)

where qR=Q$V � dVi
+Q$A1 � dVi

+Q$A2 � dVi
&4KEi . The relevant interface

condition between the hot wire and sample (r=r1 and t>0) is

&*(�T��r)1=(Ts&T1 )�2?r1 lRc (2)

Here, \cp and * are the heat capacity per unit volume and the thermal
conductivity of the sample, respectively, K is the mean absorption coef-
ficient, Ts is the temperature of the hot-wire surface, T1 is the temperature
of the sample inner surface, and r1 , r2 , and l are the inner radius, outer
radius, and the length of the sample, respectively. The subscript 1 denotes
the sample. Q$V � dVi

, Q$A1 � dVi
, and Q$A2 � dVi

represent the gradients of one-
way radiation heat fluxes from the entire sample volume V, and the
surfaces A1 and A2 , respectively, to the volume element dVi . Here 4KEi
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represents the gradients of the total emitting heat flux from dVi , and
Ei=n2_T 4, where n is the refractive index of the sample and _ is the
Stefan�Boltzmann constant.

For the hot wire, similarly, we write the following conduction equa-
tion (0<r<r0 and t>0):

(\cp)s
�T
�t

=*s
1
r

�
�r \r

�T
�r ++q* (3)

and the corresponding boundary condition (r=r0 and t>0)

*s \�T
�r +s

=* \�T
�r +1

+=(QV � dA1
+QA2 � dA1

)&=n2_T 4
s (4)

Here, (\cp)s and *s are the heat capacity per unit volume and the ther-
mal conductivity of the hot wire, respectively, and = is the emissivity of the
hot-wire surface A1 . The subscript s denotes the hot wire. QV � dA1

and
QA2 � dA1

represent the one-way radiation heat fluxes to an inner surface ele-
ment dA1 from the sample volume V and the outer surface A2 , respectively.

Obviously, it is very difficult to obtain an analytic solution to the
above integro-differential equations. The present authors [1] developed a
numerical method to solve the equations and study and simulate the com-
bined conductive�radiative heat transfer. The results indicate that all of the
radiative terms in Eq. (1) can be merged into one term by just considering
the overall effect of emission and absorption. By introducing the concept of
the effective mean absorption coefficient Kx and adopting the temperature
rise variable T� =T&T0 , we can simplify Eq. (1) as follows:

1
a

�T�
�t

=\�2T�
�r2 +

1
r

�T�
�r +&

16Kxn2_T 3
0

*
T� (5)

Here, a is the thermal diffusivity of the sample and Kx obeys the condition
0�Kx�K.

In the same way, for the wire�sample boundary condition, Eq. (4),
considering the overall effect of emission and absorption between the hot-
wire surface and the sample, and furthermore introducing the concept of
the effective emissivity of wire surface =x , we obtain the following simplified
boundary condition:

&*s \�T�
�r +s

=
T� s&T� 1

2?r0 lRc
+4=xn2_T 3

0T� s (6)

where =x obeys the condition 0�=x�=.
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The initial condition can be written as (0<r<r2 and t=0)

T� (r, t)=0 (7)

3. TEMPERATURE RISE OF A HOT WIRE

The Laplace transform and thermal quadrupole methods [2] are used
to solve the above heat transfer problem.

3.1. Quadrupole of a Semitransparent Cylindrical Sample

% and , are the Laplace transforms of the temperature rise T� and heat
flux Q, respectively. By virtue of Eq. (7), performing a Laplace transform
on Eq. (5) and solving the transformed differential equations, we obtain the
solution as [3, 4]:

\%1

,1+=\A
C

B
D+\

%2

,2+=[M] \%2

,2+ (8)

where subscript 1 refers to r1 and 2 refers to r2 . The matrix elements are:

A=:2 [I0 (:1 ) K1 (:2 )+I1 (:2 ) K0 (:1 )]

B=[I0 (:2 ) K0 (:1 )&I0 (:1 ) K0 (:2 )]�(2?*l )

C=2?*l[I1 (:2 ) K1 (:1)&I1 (:1 ) K1 (:2 )]

D=:1[I0 (:2 ) K1 (:1 )+I1 (:1 ) K0 (:2 )]

where :1=( p�a+G )1�2 r1 , :2=( p�a+G )1�2 r2 , and G=16Kx n2_T 3
0 �*.

Here p is the Laplace variable. I0 , I1 , K0 , and K1 are modified Bessel func-
tions of the first and second kind and of order 0 and 1, respectively.

The linear relationship between input and output variables from
Eq. (8) can be expressed as a quadrupole as shown in Fig. 1a. [M] is the
inverse transmitting matrix, and the four elements obey the relation
AD&BC=1. Thus, this quadrupole is equivalent to the network of three
impedances as shown in Fig. 1b, i.e.,

Z1=(A&1)�C, Z2=(D&1)�C, Z3=1�C (9)

When r2 tends to infinity, we get the impedance of an infinite, semitranspa-
rent material as illustrated in Fig. 1c:

Z1 � Z=K0 (:1 )�2?*l:1K1 (:1) (10)

468 Yu, Zhang, and Gao



File: 840J 063405 . By:XX . Date:01:02:00 . Time:09:09 LOP8M. V8.B. Page 01:01
Codes: 1200 Signs: 496 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Thermal quadrupole
and impedances. (a) Thermal
quadrupole. (b) Equivalent im-
pedance. (c) Impedance of an
infinite sample.

3.2. Hot Wire

The average temperature rise of the wire T� m and the heat flow Qm are
chosen as input variables; they are also the measured parameters:

T� m (t)=2r&2
0 |

r0

0
T� (r, t)r dr, Qm=?r2

0 lq* (t)

%m and ,m are the Laplace transforms. The same approach as before is
used, and from Eqs. (3) and (7), we obtain:

_%m

,m&=_A
C

B
D&_

%0

,0& (11)
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where the subscript 0 refers to r0 and

A=1

B=I0 (:0 )�2?*s l:0 I1 (:0)&1�(\cp )sVsp=Zs

C=(\cp)s Vs p=Csp

D=:0 I0 (:0 )�2I1 (:0 )

and :0=- p�as r0 , Vs=?r2
0 l. Hence, the impedances corresponding to this

quadrupole are

Z1=0, Z2=Zs , Z3=1�Cs p (12)

3.3. Contact Boundary Between Wire and Sample

We define in Eq. (6) that

Rx=1�8?r0 l=xn2_T 3
0

which represents the thermal radiative resistance of the hot-wire surface. It
is easy to show that the following solution conforms to Eqs. (2) and (6):

\%0

,0+=\A
C

B
D+\

%1

,1+ (13)

where A=1, B=Rc , C=1�Rx , D=1+Rc �Rx .
The corresponding impedances are

Z1=0, Z2=Rc , Z3=Rx (14)

3.4. Quadrupole of the Measurement System

When connecting the impedance networks of the hot wire, contact
boundary, and infinite semitransparent sample in series, we use a quad-
rupole model of a hot-wire�semitransparent-material measurement system
composed of impedances, as shown in Fig. 2.

The wire impedance Zs becomes a pure resistance, Zs=1�(8?*s l ), for
long enough time t>>r2

0 �as , that is, pr2
0�as<<1 in Laplace space. In the

quadrupole model, Cs and Rs are the total heat capacity and thermal
resistance of the hot wire, Rx is the thermal radiative resistance of the wire
surface, Rc is the thermal contact resistance, and Z is the thermal
impedance of the sample.
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Fig. 2. The quadrupole of the wire�semitransparent-material measure-
ment system.

With r1=r0 , the average temperature rise of the hot wire can then be
found very simply in Laplace space:

%m=,m�[Cs p+[Rs+(R&1
x +(Rc+Z)&1)&1]&1] (15)

Equation (15) is an analytic expression and designates the simplified
model. Thus, the hot-wire average temperature rise T� m(t) is determined at
any one time t by means of the numerical inversion of the Laplace trans-
form [5].

4. PARAMETER ANALYSIS

The simplified model, Eq. (15), includes seven parameters:

;1=r2
0 �4a, ;2=1�4?*l, ;3=Rc , ;4=Cs

;5=Gr2
0 �4, ;6=Rs , ;7=Rx

The sensitivity coefficient Xi of parameter ;i is defined as ;i �T� m ��;i

(i=1, 2,..., 7). Figure 3 shows typical variations of the sensitivity coefficient
with time. A study of the sensitivities indicates that the two parameters ;1

and ;3 are correlated at t<10 s, and ;2 and ;7 are correlated over the
complete useful time range. It is therefore impossible to identify them
simultaneously. On the other hand, the sensitivity coefficient of ;4 is so
small for t>1 s, and the sensitivity of ;6 is so small at all times that they
cannot be estimated. Thus, according to the simplified model, Eq. (15),
it is possible to only estimate the three parameters ;2 , ;3 , and ;5

simultaneously, that is, *, Rc , and Kx .
In practice, it is easy to know the radius r0 , the length l, the thermal

conductivity *s , the volumetric heat capacity (\cp )s , and the surface
emissivity = of the hot wire. The volumetric heat capacity \cp and the
refractive index n of the sample can also be known by other methods. But
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Fig. 3. Temperature rise of wire and sensitivity
coefficients.

there is still an unknown coefficient =x in parameter ;7 ; its value must be
known before estimating *, Rc , and Kx . By virtue of 0�=x�=, we
generally let =x be equal to =. The numerical simulations of parameter
estimations demonstrate that a 0.70 to 20 relative error in estimated
thermal conductivity will result from =x==, and this error can be
eliminated through repeated iteration. First, let =x==; then the values of *,
Rc , and Kx are obtained by parameter estimation. Next, =x is corrected,
and the parameter estimation is repeated. The iterative process does not
end until a certain precision in thermal conductivity is attained. A more
detailed calculation procedure is presented in [5].

5. EXPERIMENTAL STUDY

5.1. Experimental Setup

The experimental setup of the hot-wire method is presented in Fig. 4a.
The sample �1 is made up of two stacked, half-round cylindrical glass
blocks ( 105 mm_210 mm). A cross-groove is cut into the lower half
block in order to hold the hot wire and the thermocouple. The sample is
placed in a special container, and a black coating is applied to the sample
to make its outer surface a blackbody surface. Both the wire and the sam-
ple are set into a furnace �2 whose temperature can be regulated between
20 and 1000%C.

The hot wire �3 is a FeCrAl alloy with a 0.95 mm diameter. A NiCr�
NiSi thermocouple �4 of 0.5 mm is welded crosswise on the center of
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Fig. 4. Experimental setup and cross wire. (a) Experimental
setup: �1 sample, �2 furnace, �3 hot wire, �4 thermocouple,
�5 signal conditioning module, �6 A�D-converting board, �7

computer, �8 constant-current generator. (b) Cross wire.

the hot wire, as shown in Fig. 4b, and this structure is called the cross-wire.
The signal conditioning module �5 amplifies the weak thermoelectric
potential from the thermocouple to a 0 to 5 V signal UA , which is inputted
to an A�D converting board �6 , and then to the computer �7 . Ri is a
standard resistance, and R is the secondary resistance.

A constant-current generator �8 allows a fixed current (0 to 2.5 A) to
go through the wire. Before the measurements, the current goes through
the secondary stabilization circuit. As soon as the switch is closed, the wire
heats up and measurements start. The computer automatically records the
voltage UA , the voltage UB across the wire, and the voltage UC across the
Ri simultaneously in order to determine the temperature rise and electric
power consumption of the wire.
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In the cross-wire scheme, the thermocouple attached to the hot wire
will bring about additional loss of heat conduction and cause a local tem-
perature drop at the cross joint of wire and thermocouple. If the thermo-
physical properties of the hot wire and thermocouple are almost the same,
an approximate relation is obtained [5]:

T� t (t)�T� m (t)=1�[1+(rt �r0)2] (16)

where T� t (t) is the temperature rise of cross joint, i.e., the measured tem-
perature rise of the hot wire, T� m (t) is the temperature rise of the hot wire
without the attached thermocouple, and rt �r0 is the radius ratio of the ther-
mocouple to the hot wire. It is obvious that the thinner the radius of ther-
mocouple, the more closely does the measured temperature rise of the hot
wire approach the true value. In the case of a thicker thermocouple, the
measured temperature rise must be corrected according to Eq. (16) in order
to achieve a reliable experimental result.

5.2. Experimental Results and Discussion

For the case of semitransparent materials at high temperatures, where
the effect of radiative heat transfer is significant, the variation of the tem-
perature rise of the hot wire T� m (t) with the logarithm of time ln(t) is no
longer clearly linear in the latter portion, but is curved concave to the ln(t)
axis. An experimental study on a glass sample, glass K9, verifies this rela-
tionship; the parameters employed for the experimental measurement are
reported in Table I.

Figure 5 shows the variation of the temperature rise of the hot wire at
a temperature of 297 K, the measured wire temperature rise T� m (dots), and
the calculated temperature rise T� c (solid line) obtained with identified
values of parameters. The lower curve in Fig. 5 is the residual curve

Table I. Parameters for the Experiment

Sample: glass K9
n=1.5163, \=2520 kg } m&3

cp=0.8 to 1.0 kJ } kg&1 } K&1

Hot wire: FeCr25Al5
*=16.75 W } m&1 } K&1, \=7100 kg } m&3

cp=0.494 kJ } kg&1 } K&1, ==0.04 to 0.1
q=6 W } m&1 (T<1100 K)
q=8 W } m&1 (T>1100 K)

Thermocouple: NiCr�NiSi
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Fig. 5. Temperature rise of hot wire vs. time at
T=297 K.

r=4(T� m&T� c ) showing the deviation between the measured and the
calculated temperature rise. The experimental results indicate that the tem-
perature rise T� m (t) with ln(t) is still linear in the latter portion when the
temperature is below 678 K. Under these circumstances, the effect of heat
radiation can be neglected and the sample is treated as a nontransparent
material. Then, the thermal conductivity of the sample * and the total
thermal resistance Rt can be determined [3].

When the temperature is larger than 678 K, the change in temperature
rise T� m (t) begins to become concave to the ln(t) axis, and becomes
increasingly curved with an increase in temperature. Figure 6 shows the
variation of the temperature rise of a hot wire at a temperature of 960 K;
the solid line in Fig. 6a represents the calculated temperature rise without
consideration of the radiative heat transfer and in accordance with the
model for a nontransparent material. By observing the residual or devia-
tion curve in Fig. 6a, a systematic curvature is evident, and this implies that
the model does not fit the experimental data. The solid line in Fig. 6b
represents the calculated temperature rise including the effect of heat radia-
tion and in accordance with the new, simplified model, Eq. (15). It is observed
that the residuals are well distributed and randomly oscillate around zero,
and thus have the character of random error. This implies that the new
model basically fits the experimental data. The new simplified model
includes the effect of heat radiation on the heat transfer, and the
parameters estimated for the new model are more realistic and reasonable
than the parameters estimated for the old model.

Figure 7 presents the dependence of the thermal conductivity of
glass K9 on temperature. Here the ``squares'' denote the results obtained
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Fig. 6. Temperature rise of hot wire at T=960 K
(a) With the model of a nontransparent material.
(b) With the new model of a semitransparent material.

without including the effect of radiation. The ``circles'' denote the results
obtained including the effect of heat radiation inside only the sample and
using the effective mean absorption coefficient Kx. The ``triangles'' denote
the results obtained including the effects of radiation of both the wire and
sample, and using both the effective mean absorption coefficient Kx and the
effective emissivity of the hot-wire surface =x . The solid line corresponds to
a least-squares fit of the experimental points.

According to the known composition of glass K9, we can determine
the thermal conductivity at ambient temperature on the basis of some
empirical formulas; *=0.854 W } m&1 } K&1 by the Russ formula [6]. This
value is in good agreement with the result of *=0.862 W } m&1 } K&1

obtained in our experiment at a temperature of 297 K.
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Fig. 7. Thermal conductivity of glass K9 vs. tem-
perature. (g) Without radiation, (m) with radiation of
the sample alone, (q) with radiation of the wire and
the sample; (��) fitting of experimental points.

As predicted by microscopic theoretical models of the thermal conduc-
tivity of disordered systems in solid-state physics, the temperature
dependence of * is similar to that of its specific heat. As far as glass is con-
cerned, the variation of its thermal conductivity with temperature should
be approximately linear, even at high temperatures. The thermal conduc-
tivity tends not to increase steeply, but rather to increase gradually, and
this prediction has been confirmed by experimental results [7].

6. CONCLUSION

Based on the numerical analysis of the combined transient conduc-
tive�radiative heat transfer inside a semitransparent sample for the case of
the hot-wire technique, a new simple analytic model for the thermal con-
ductivity measurement of semitransparent solid materials has been
developed. Two important factors, i.e., the overall effect of emission and
absorption inside the sample and the overall effect of emission and absorp-
tion by the wire surface, are taken into account simultaneously in the new,
simplified model. Based on parameter estimation, sensitivity analyses were
performed for the new model, and it was found that three unknown
parameters, the thermal conductivity of the sample, the thermal contact
resistance, and the effective mean absorption coefficient, are uncorrelated
and can be determined simultaneously. Furthermore, an experimental
study was carried out on one special glass��glass K9��in the temperature
range of 297 to 1230 K, and the radiation-free thermal conductivity was
determined. Our experimental results agree closely with the predictions of
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microscopic theoretical models of the thermal conductivity of disordered
systems, and this result supports the applicability of the developed
measurement technique.
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